Synthesis and Characterization of (C₅Me₅)₂Os₂Br₄ and the Osmium Polyhydride (C5Me5)OsH5: A New Synthetic Entry into Mono(pentamethylcyclopentadienyl)osmium Chemistry

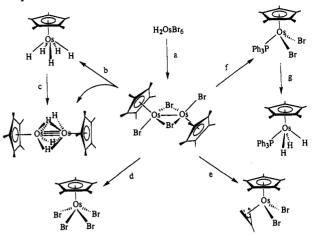
Christopher L. Gross, Scott R. Wilson, and Gregory S. Girolami*

> School of Chemical Sciences 505 South Mathews Avenue University of Illinois at Urbana-Champaign Urbana, Illinois 61801

> > Received July 5, 1994

Molecules that contain $(C_5Me_5)M$ units exhibit a particularly rich and interesting chemistry, but corresponding (C₅Me₅)Os complexes are extremely rare.¹ In part, this situation reflects the lack of a convenient osmium starting material: for all of the transition elements except osmium and the radioactive element technetium, synthetic routes have been developed to prepare derivatives of the type $(C_5R_5)MX_n$, where X is a halide ligand (usually chloride).² We now describe our discovery of a convenient method to synthesize such "half-sandwich" complexes of osmium; this development affords for the first time a general route to the synthesis of a wide variety of (C₅Me₅)OsL_n complexes (Scheme 1). We also describe the preparation, characterization, and reactivity of the novel osmium(VI) hydride (C₅Me₅)OsH₅.

Our attempts to prepare an osmium analogue of the widelyused ruthenium starting material $(C_5Me_5)_2Ru_2Cl_4^3$ from chloroosmium starting materials have been completely unsuccessful. We have found, however, that refluxing a mixture of hexabromoosmic acid, H₂OsBr₆,⁴ and 1.5 equiv of C₅Me₅H in ethanol or tert-butyl alcohol for 45 min affords a brown-black precipitate, which has been identified as the osmium(III) dimer $(C_5Me_5)_2Os_2Br_4$, in 75% yield. The complex is weakly paramagnetic as judged from its ¹H and ¹³C NMR resonances, which are shifted and broadened.⁵ The field ionization mass spectrum of $(C_5Me_5)_2Os_2Br_4$ contains an envelope of peaks centered at m/e890 due to the $[(C_5Me_5)_2Os_2Br_3]^+$ ion.


An X-ray crystallographic study⁶ of (C₅Me₅)₂Os₂Br₄ shows that two of the bromide ligands bridge between the two osmium centers (Figure 1); selected distances and angles are as follows: Os-Os = 2.970(1) Å, $Os-Br_1 = 2.559(1)$ Å, $Os-Br_b = 2.482(1)$ Å, Os-Br_b-Os = 73.51(4)°, Br_b-Os-Br_b = 106.49(4)°, and Br_b -Os-Br₁ = 89.78(4)°. The structure is similar to that of $(C_5Me_5)_2Ru_2Br_4$ and to the deformational isomer of

(2) Poli, R. Chem. Rev. 1991, 91, 509-551.

(3) (a) Tilley, T. D.; Grubbs, R. H.; Bercaw, J. E. Organometallics 1984, 274-278. (b) Oshima, N.; Suzuki, H.; Moro-oka, Y. Chem. Lett. 1984, 1161-1164.

(4) The H₂OsBr₆ (prepared from OsO₄ and 48% HBr) must be thoroughly dried at 50 °C, or else the unusual salt $[Cp*_2OsH_{12}[Os_2Br_8]$ may be obtained. See: Gross, C. L.; Wilson, S. R.; Girolami, G. S. *Inorg. Chem.*, submitted. (5) Spectroscopic data for $(C_5Me_5)_2Os_2Br_4$: ¹H NMR $(CD_2Cl_2, 25 °C)$ $\delta 2.56$ (s, C_5Me_5); ¹³C[¹H] NMR $(CD_2Cl_2, 25 °C)$ $\delta 13.00$ (C_5Me_5) , 101.22 (C-Me_3). MS (ET) was 280 (Mt = Pa).

 $(C_5 Me_5)$; MS (FI) m/e 890 (M⁺ – Br).

^a (a) C₅Me₅H in EtOH or t-BuOH, reflux; (b) LiAlH₄ in Et₂O followed by addition of MeOH at -78 °C; (c) photolysis in C₆H₆; (d) Br₂ in CH₂Cl₂; (e) BrCH₂CMe=CH₂ and EtOH in CH₂Cl₂; (f) PPh₃ in EtOH, reflux; (g) NaBH4 in EtOH.

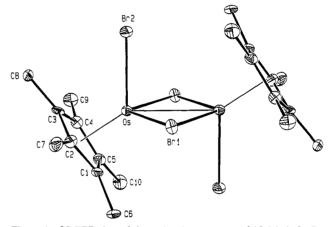


Figure 1. ORTEP view of the molecular structure of (C₅Me₅)₂Os₂Br₄; the 35% probability density surfaces are shown.

 $(C_5Me_5)_2Ru_2Cl_4$ with the shorter Ru-Ru distance.⁷ Interestingly, the Os-Br distances to the bridging bromide ligands are shorter than those to the terminal bromide ligands. This unusual structural feature is also seen in $(C_5Me_5)_2Ru_2Br_4$ and the shortbond isomer of $(C_5Me_5)_2Ru_2Cl_4$ (but not in $(C_5Me_4Et)_2Ru_2Cl_4!)^7$ and may reflect the fact that the HOMO is nonbonding with respect to the bridging bromide atoms but antibonding with respect to the terminal bromides.8

The dinuclear complex has proven to be an excellent starting material for the preparation of new organometallic complexes of osmium. Treatment of $(C_5Me_5)_2Os_2Br_4$ with LiAlH₄ in diethyl ether followed by methanolysis at -78 °C gives the colorless osmium(VI) hydride (C_5Me_5)OsH₅, which can be purified by sublimation at 50 °C in vacuum in 19% overall yield.9 The pentahydride occupies a position intermediate between the known rhenium¹⁰ and iridium¹¹ polyhydrides (C₅Me₅)ReH₆ and

Chem. Soc., Dalton Trans. 1990, 3407-3418.

⁽¹⁾ Few osmium complexes of any kind with one cyclopentadienyl (or substituted cyclopentadienyl) ligand have been described. See: (a) Albers, M. O.; Robinson, D. J.; Singleton, E. Coord. Chem. Rev. 1987, 79, 1–96. (b) Albers, M. O.; Liles, D. C.; Robinson, D. J.; Schaver, A.; Singleton, E.; Wiege, M. B.; Boeyens, J. C. A.; Levendis, D. C. Organometallics 1986, 5, 2321-2327. (c) Herrmann, W.; Herdtweck, E.; Schäfer, A. Chem. Ber. 1988, 121, 1907–1911. (d) Marshman, R. W.; Shusta, J. M.; Wilson, S. R.; Shapley, P. A. Organometallics 1991, 10, 1671–1676. (e) Weber, L.; Reizig, K.; Bungardt, D.; Boese, R. Organometallics 1987, 6, 110-114. (f) Weber, L.; Bungardt, D. J. Organomet. Chem. 1986, 311, 269-280. (g) Weber, L.; Reizig, K.; Bungardt, D.; Boese, R. Chem. Ber. 1987, 120, 1421-1426. (h) Sanderson, L. J.; Baird, M. C. J. Organomet. Chem. 1986, 307, C1-C4. (i) Johnston, L. J.; Baird, M. C. J. Organomet. Chem. 1988, 358, 405-409. (j) Johnston, L. J.; Baird, M. C. Organometallics 1988, 7, 2469–2475. (k) Pourreau, D. B.; Geoffroy, G. L.; Rheingold, A. L.; Geib, S. J. Organometallics 1986, 5, 1337– 1345. (1) Freedman, D. A.; Matachek, J. R.; Mann, K. R. Inorg. Chem. 1993, 32, 1078-1080.

⁽⁶⁾ Crystal data for $(C_5Me_5)_2Os_2Br_4$: monoclinic, space group $P2_1/c$, a = 9.597(2) Å, b = 13.821(4) Å, c = 9.773(3) Å, $\beta = 117.26(2)^\circ$, V = 1152.3(5) Å³, Z = 2, R_F $(I > 2\sigma(I)) = 0.0336$, and R_{wF}^2 (all data) = 0.0942 for 124 parameters and 1962 observed and 2376 total data. All non-hydrogen atoms were refined with independent anisotropic thermal parameters; hydrogen atom positions were refined with idealized C-H distances and C-C-H and H-C-H angles, and their isotropic thermal parameters were set equal to $1.2U_{eq}$ for the attached carbon atom

⁽⁷⁾ Kölle, U.; Kossakowski, J.; Klaff, N.; Wesemann, L.; Englert, U.;
Heberich, G. E. Angew. Chem., Int. Ed. Engl. 1991, 30, 690-691.
(8) Green, J. C.; Green, M. L. H.; Mountford, P.; Parkington, M. J. J.

Communications to the Editor

 (C_5Me_5) IrH₄. The ruthenium analogue of this pentahydride is not known, although recently two ruthenium tris(pyrazolyl)borate complexes have been described that are formulated as nonclassical molecular dihydrogen derivatives, $(L)RuH(H_2)_2$.^{12,13}

The pentahydride $(C_5Me_5)OsH_5$ exhibits a ¹H NMR singlet at δ -11.16 which remains sharp even at -90 °C. The spinlattice relaxation time (T_1) of this resonance at -90 °C is 1.6 s, which rules out the possibility that this molecule is a nonclassical hydride.¹⁴ The low-temperature ¹H NMR spectrum of (C₅Me₅)-OsH₅ suggests that this molecule either adopts a unique fivelegged piano stool geometry or is highly fluxional and adopts a pseudooctahedral structure with one axial and four equatorial hydride ligands. The latter possibility seems less likely in view of the fact that the inequivalent axial and equatorial hydride sites in the rhenium complex $(C_5Me_5)ReH_6$ were readily distinguishable by NMR spectroscopy.¹⁰ The IR spectrum of (C₅Me₅)- OsH_5 as a Nujol mull shows two bands at 2214 (w) and 2083 (s) cm⁻¹; these bands also appear in the Raman spectrum, and the latter is polarized. The pentahydride is a reasonably robust molecule: it neither decomposes nor undergoes H/D exchange after being heated at 100 °C for 24 h in C_6D_6 . The pentahydride also does not react with D_2 (1 atm) under similar conditions.

The reaction of $(C_5Me_5)_2Os_2Br_4$ with LiAlH₄ and methanol yields a second product which can be isolated by crystallization from diethyl ether in 25% yield: the dinuclear tetrahydride $(C_5Me_5)_2Os_2H_4$. This species is analogous to the known¹⁵ ruthenium complex $(C_5Me_5)_2Ru_2H_4$ and can also be prepared in high yield by photolysis of $(C_5Me_5)O_5H_5$ in C_6H_6 with a mercury arc lamp. The dark red diosmium tetrahydride complex is characterized by an Os-H stretch at 1762 cm⁻¹ and by a singlet in the ¹H NMR spectrum at δ –15.80.¹⁶ The hydride ligands are equivalent in the ¹H NMR spectrum even at -90 °C, which

 (14) Kubas, G. J. Acc. Chem. Res. 1988, 21, 120–128.
 (15) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Moro-oka, Y. Organometallics 1988, 7, 2243-2245.

suggests that all four bridge the metal-metal bond as seen in $(C_5Me_5)_2Ru_2H_4.$

Other high-valent organoosmium complexes can be prepared from (C₅Me₅)₂Os₂Br₄. Addition of Br₂ to (C₅Me₅)₂Os₂Br₄ in CH₂Cl₂ gives the osmium(V) halide complex (C₅Me₅)OsBr₄;¹⁷ the corresponding bromination of the ruthenium analogue gives a ruthenium(IV) product $(C_5Me_5)RuBr_3$.¹⁸ The reaction of $(C,Me_5)_2Os_2Br_4$ with 3-bromo-2-methylpropene and ethanol in CH_2Cl_2 yields the methallyl complex (C_5Me_5)OsBr₂(η^3 -CH₂CMe-CH₂),¹⁷ which closely resembles the analogous ruthenium compound.¹⁹ Treatment of $(C_5Me_5)_2Os_2Br_4$ with PPh₃ in ethanol gives (C₅Me₅)Os(PPh₃)Br₂,¹⁷ which in turn reacts with NaBH₄ in ethanol to afford the osmium(IV) trihydride $(C_5Me_5)Os(PPh_3)$ - H_3 .¹⁷ Unlike its ruthenium analogues,²⁰ which are classical trihydrides but are fluxional and show large exchange couplings between the hydride nuclei, $(C_5Me_5)Os(PPh_3)H_3$ is nonfluxional and has a ${}^{2}J_{\rm HH}$ coupling constant that is too small to be resolved. The hydride ligands "cis" and "trans" to the phosphine ligand in the square base of the four-legged piano stool appear as doublets at $\delta - 14.28$ (²J_{PH} = 33.5 Hz) and $\delta - 13.77$ (²J_{PH} = 8 Hz), respectively, at 25 °C. Interestingly, the ${}^{2}J_{PH}$ couplings to the "cis"-hydrides are also the larger in the ruthenium $(C_5Me_5)Ru(L)H_3$ complexes.^{20c}

The diosmium complex $(C_5Me_5)_2Os_2Br_4$ is clearly a versatile starting material for the synthesis of molecules containing the $(C_5Me_5)Os$ fragment, and increased interest in the organometallic chemistry of osmium can be expected as a result.

Acknowledgment. We thank the Exxon Educational Foundation for support, Prof. Paul Bohn and Eva Thurman for assistance with the Raman experiments, and Theresa Prussak-Wieckowska for assistance with the X-ray crystallographic study. C.L.G. is the recipient of a Department of Education Fellowship from the Chemistry Department at the University of Illinois.

Supplementary Material Available: Tables of crystal data, atomic coordinates, and selected bond distances and angles (6 pages); listing of observed and calculated structure factors for $(C_5Me_5)_2Os_2Br_4$ (6 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

(18) Oshima, N.; Suzuki, H.; Moro-oka, Y.; Nagashima, H.; Itoh, K. J. Organomet. Chem. 1986, 314, C46-C48.

(19) (a) Nagashima, H.; Mukai, K.; Shiota, Y.; Yamaguchi, K.; Ara, K.; Itoh, K.; Fukahori, T.; Suzuki, H.; Akita, M.; Moro-oka, Y; Itoh, K. Organometallics 1990, 9, 799-807. (b) Masuda, K.; Saitoh, M.; Aoki, K.; Itoh, K. J. Organomet. Chem. 1994, 473, 285-294.

(20) (a) Suzuki, H.; Lee, D. H.; Oshima, N.; Moro-oka, Y. Organometallics 1987, 6, 1569–1575. (b) Arliguie, T.; Border, C.; Chaudret, B.; Devillers, J.; Poilblanc, R. Organometallics 1989, 8, 1308–1314. (c) Heinekey, D. M.; Payne, N. G.; Sofield, C. D. Organometallics 1990, 9, 2643-2645.

⁽⁹⁾ Spectroscopic data for (C₅Me₅)OsH₅: ¹H NMR (toluene-d₈, 25 °C) δ 2.04 (s, C₅Me₅), -11.16 (s, OsH) (the relative intensities of the ¹H NMR resonances clearly show that five hydride ligands are present); MS (FI) m/e 32 (M⁺); IR (Nujol) 2214 (w), 2083 (s) cm⁻¹; Raman (pentane) 2214 (w), 2096 (s) cm⁻¹. For the Os-H stretches of (C₅Me₅)OsH₅, the C_{5v} structure should exhibit two IR and three Raman bands, while the pseudo- C_{4v} structure should exhibit three IR and four Raman bands. The presence of two bands in both the IR and Raman spectra is more consistent with the C_{5v} alternative, although the assignment of structures based on counting the number of M-H stretching bands is often unreliable. An X-ray crystal structure refined well but did not afford positions for the hydrogen atoms.

^{(10) (}a) Herrmann, W. A.; Okuda, J. Angew. Chem., Int. Ed. Engl. 1986, 25, 1092–1093. (b) Herrmann, W. A.; Theiler, H. G.; Herdtweck, E.; Kiprof, P. J. Organomet. Chem. 1989, 367, 291–311. (c) Herrmann, W. A.; Theiler, H. G.; Kiprof, P.; Tremmel, J.; Blom, R. J. Organomet. Chem. 1990, 395, 69-84.

^{(11) (}a) Gilbert, T. M.; Bergman, R. G. Organometallics 1983, 2, 1458-1460. (b) Gilbert, T. M.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1985, 107, 3508-3516.

⁽¹²⁾ Moreno, B.; Sabo-Etienne, S.; Chaudret, B.; Rodriguez-Fernandez, A.; Jalon, F.; Trofimenko, S. J. Am. Chem. Soc. 1994, 116, 2635-2636.

⁽¹³⁾ A few phosphine-stabilized osmium(VI) hydrides of stoichiometry OsH₆(PR₃)₂ and [OsH₅(PR₃)₃+] are known. See: (a) Douglas, P. G.; Shaw, B. L. J. Chem. Soc. A **1970**, 334–338. (b) Bruno, J. W.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1984, 106, 1663-1669. (c) Connelly, N. G.; Howard, J. A. K.; Spencer, J. L.; Woodley, P. K. J. Chem. Soc., Dalton Trans. 1984, 2003–2009. (d) Halpern, J.; Cai, L.; Desrosiers, P. J.; Lin, Z. J. Chem. Soc., Dalton Trans. 1991, 717–723. (e) Aracama, M.; Estruelas, M. A.; Lahoz, F. J.; Lopez, J. A.; Meyer, U.; Oro, L. A.; Werner, H. Inorg. Chem. 1991, 30, 288-293.

⁽¹⁶⁾ Spectroscopic data for (C₅Me₅)₂Os₂H₄: ¹H NMR (toluene-d₈, 25 °C) & 2.01 (s, C5Me5), -15.80 (s, OsH); MS (FD) m/e 656 (M+); IR (Nujol) 1762 cm⁻¹.

⁽¹⁷⁾ Yields and spectroscopic data: (a) for (C₅Me₅)OsBr₄, yield, 70%; MS (FD) m/e 647 (M⁺); (b) (C₅Me₅)OsBr₂(η^3 -CH₂CMeCH₂), yield, 56%; ¹H NMR (CD₂Cl₂, 25 °C) δ 3.60 (s, CH₂), 2.86 (s, CH₂), 2.84 (s, CMe), 1.68 (s, C₅Me₅); (c) (C₅Me₅)OsBr₂(PPh₃), yield, 67%; MS (FD) m/e 747 (M⁺); ¹H NMR (CD₂Cl₂, 25 °C) δ 28.0 (br s, C₅Me₅, 15H), 21.5 (br s, o-CH, 2H), 12.2 (br s, m-CH, 2H), 11.0 (br s, p-CH, 1H), 3.7 (br s, m'-CH, 4H), 3.2 (br s, p'-CH, 2H), -11.2 (br s, o'-CH, 4H) (evidently, rotation about the Os-P bond is slow on the NMR time scale so that two different phenyl environments (in a ratio of 2:1) are seen); (d) (C₅Me₅)OsH₃(PPh₃), yield, 73%; ¹H NMR (CD₂Cl₂, 25 °C) δ 7.36 (m, PPh₃, 15H), 1.91 (s, C₅Me₅, 15H), -13.77 (d, ²J_{PH} = 8 Hz, OsH, 1H) -14.28 (d, ²L₂ = -23 5 Hz, OsH, 5 Hz, OsH, 1H) -13.78 (d, ²L₂ = -23 5 Hz, OsH, 1H) - $J_{PH} = 8$ Hz, OsH, 1H), -14.28 (d, $^{2}J_{PH} = 33.5$ Hz, OsH, 2H); IR (Nujol) 2101 (m, sh), 2068 (s), 2049 (s) cm⁻¹